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ABSTRACT: In this paper, we try to study the heat transfer flow by natural convection and radiation with 
variable wall temperature in a saturated porous medium confined in a rectangular cavity.  In this study we 
assume the left vertical wall of the cavity is at temperature Th (Th+By

λ
) and right vertical wall temperature Tc   

(Th>Tc) the top and bottom horizontal surfaces of the cavity are adiabatic. Darcy law is to be obeyed to the 
flow inside the porous medium the properties of the fluid and porous medium are homogeneous, isotropic 
and constant expect variation of fluid density with temperature. The fluid and porous medium are in thermal 
equilibrium and flux of heat radiation in y - direction is negligible in comparison to that in x-direction. 
Galerkin Finite Element Method of three nodded triangular elements has been used to convert the partial 
differential equations into the matrix form equations. Results are presented in terms of stream functions and 
isotherms for various values of Aspect ratios, Radiation parameters, Rayleigh numbers, Nusselt numbers 
and Power law exponents(�). 

Keywords: Convective Heat Flow, Rectangular Cavity, Non-Isothermal Wall, natural convection, Radiation 
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I. INTRODUCTION 

The study of natural convection heat transfer in confined 
saturated porous medium with a fluid has important 
engineering applications such as Geothermal systems, 
Nuclear engineering, Petroleum engineering and 
Insulation technology etc. 

A natural convection, in a vertical rectangular 
cavity filled with a non-Newtonian fluid and subjected to 
uniform heat flux along the vertical side walls, is carried 
out numerically by solving the full governing equations. 
In the limit of a tall enclosure, these equations are 
considerably reduced by using the parallel flow 
approximation. Solutions for the flow and temperature 
fields, and the heat transfer rate, are obtained as 
functions of the governing parameters. Good agreement 
is found between the results of the two approaches for a 
wide range of governing parameters. 

The natural convective heat transfer of 
pseudoplastic fluids in a square cavity with a heated 
bottom and cooled top walls was examined by a direct 
numerical analysis using the Sutterby model. 
Consequently, it could be verified that the heat transfer 
rate of pseudoplastic fluids became larger than that of a 
Newtonian fluid under thermal conditions where stable 
vortex flows were formed. The reason is that fluid flows 
are easy to further develop particularly near the walls 
due to the decrease in the apparent viscosity by the 
shear-thinning effect. On the other hand, it was found 
that the locally larger change in viscosity had the 
potential of causing the formation of a complicated flow 
field when the non-Newtonian fluid was highly 
pseudoplastic and the Rayleigh number increased. The 
contribution of the shear-thinning effect depending on 
the non-Newtonian property and the thermal condition 
was clearly revealed. Darcy’s law is the equation that 
defines the ability of a fluid to flow through a porous 

media such as rock.  It relies on the principle that the 
amount of flow between two points is directly 
proportional to the difference in pressure between the 
points and the ability of the media through which it is 
flowing to impede the flow.  Here pressure refers to the 
excess of local pressure over the normal hydrostatic 
fluid pressure which, due to gravity, increases with 
depth like in a standing column of water.   This factor of 
flow impedance is referred to as permeability. 
        Darcy's law is a simple proportional relationship 
between the instantaneous discharge rate through a 
porous medium and the pressure drop over a given 
distance. 
Darcy's law is usually written as: 

Q = -KA dh/dl 

where :   Q =     rate of water flow (volume per time) 
               K =     hydraulic conductivity 
               A =     column cross sectional area 
         dh/dl = hydraulic gradient, that is, the change in 
head over the length of interest. 

The literature, natural convection heat Transfer in 
enclosures by Ostrach [1]. Unsteady natural convection 
in a rectangular cavity by Patterson [2], Applied Finite 
element analysis by Segerland [3] is inspired in 
research. An experimental investigation of mixed cavity 
natural convection in the high Rayleigh number regime 
by Kirkpatrick [4], Natural convection in rectangular 
enclosures from below and cooled along one side 
explained detailed by November et.al., [5]. 
Transient natural convection in a rectangular enclosure 
with one heated side wall by Hall and Bejan [6] Heat 
transfer in square cavities with partially active vertically 
walls numerically explained by Valencia and Frederick 
[7].

e
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Numerical solutions of transient natural convection in a 
square cavity with different side wall temperature and 
Natural convection in a differentially heated square 
cavity with internal heat generation are given by Hyun 
et.al., [8], Natural convection in rectangular enclosures 
heated from below and symmetrically cooled from the 
sides numerically explained by Milanez [9], Cheung 
etal..[10] Problems in Isotropic Seepage by Finite 
Elements are solved numerically. Natural convection in 
rectangular enclosures heated from one side and cooled 
from the ceiling investigated by Ayhan [11], Free 
Convection in a Thermally Stratified Non-Darcy Porous 
Medium Saturated with a Non-Newtonian Fluid, 
P.V.S.N. Murthy [12], Forced Convection Flow of 
Power-Law Fluids Over a Flat Plate Embedded in a 
Darcy-Brinkman Porous Medium Asterios and Eugun 
[13], A numerical study on natural convection in porous 
media-filled an inclined triangular enclosure with heat 
sources using nano-fluid in the presence of heat 
generation effect by Mansour and Ahmed [14], The flow 
of a rarefied gas in a rectangular enclosure due to the 
non-isothermal walls with no synergetic contributions 
from external force fields is investigated by Stefanov 
[15]. The radiant efflux from a cylindrical cavity having 
non-isothermal bounding surfaces is determined by 
solving a problem of combined radiation and conduction 
by Heinisch [16], Combined effects of thermal radiation 
and internal heat source/sink, formulation for natural-
convection flow in a square cavity filled with porous 
medium using isothermal vertical walls and adiabatic 
horizontal ones, has been studied numerically by using 
finite-difference technique in staggered grid distribution 
by Sabyasachi et al., [17]. 

II. MATHEMATICAL FORMULATION 

Consider a two dimensional cavity of height and width 
(L) filled with saturated porous medium, the left vertical 
surface of the cavity is maintained at temperature Th 
greater than right vertical surface temperature Tc, the  
top and bottom horizontal surfaces of the cavity are 
adiabatic.  The flow inside the porous medium is 
assumed to obey Darcy law and there is no phase 
changes of the fluid the properties of the fluid and 
porous medium are homogeneous, isotropic and 
constant except variation of fluid density with 
temperature.  The fluid and porous medium are in 
thermal equilibrium and radiative heat flux in y direction 
is negligible in comparison to that in the x - direction. 
The governing equations in Cartesian Coordinates can 
be written as  
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With the boundary conditions are 

At hot wall   x = 0   u = 0, v = 0  T = T∞ + B yλ  
At cold wall x = L u = 0, v = 0 T = Tc  

At hot wall y = 0 u = 0, v = 0       0=
y

T

∂

∂
 

At cold wall y = L u = 0, v = 0       0=
∂

∂

y

T
 

The Continuity equation (1) can be satisfied 
automatically by introducing the stream function ‘ψ’ as 

    u =
y

ψ

∂

∂
                                                                (4.a) 

     v =
x

ψ

∂

∂

 
                                                      (4.b) 

where  x and y are the distances measured along the 
horizontal and vertical directions respectively and u and 
v are the velocity components in the x - and y - 
directions respectively.  
Using the following non dimensional variables, 

Width, 
L

x
X =  Height,   

L

y
Y =  and   Stream 

function, 
α

ψ
ψ =     

The governing equations (1) to (3) reduced   to non-

dimensional form and introducing stream function ‘ψ’  
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Where T denotes the temperature � and α  are 

kinematic viscosity and thermal diffusivity respectively, K 
is the medium permeability, Th and Tc are the 
temperatures at hot bottom wall and cold vertical walls 
respectively L is the side of the square cavity. 

Temperature 
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θ =     
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With  the  non-dimensionless boundary conditions are 

at X = 0                ψ = 0  θ  = 1 

at X = 1  ψ = 0  θ  = 1 

at Y = 0  ψ = 0  0=
y

θ

∂
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at Y = 1  ψ = 0  0=
y

θ

∂
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III. SOLUTION OF THE PROBLEM 

Thus far we have derived the partial differential 
equations, which describe the heat and fluid flow 
behavior in the vicinity of porous medium. The 
development of governing equations is one part but the 
second and important part is to solve these equations in 
order to predict the various parameters of interest in the 
porous medium. There are various numerical methods 
available to achieve the solution of these equations, but 
the most popular numerical methods are Finite 
difference method, Finite volume method and the Finite 
element method. The selection of these numerical 
methods is an important decision, which is influenced by 
variety of factors amongst which the geometry of 
domain plays a vital role. Other factors include the ease 
with which these partial differential equations can be 
transformed into simple forms, the computational time 
required and the flexibility in development of computer 
code to solve these equations. 
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In the present study, we have predominantly used Finite 
Element Method (FEM). The following sections enlighten 
the Finite element method and present its application to 
solve the governing equations. 
The Finite Element Method is a deservingly popular 
method amongst scientific community. This method was 
originally developed to study the mechanical stresses in 
a complex air frame structure popularized by Zienkiewicz 
and Cheung by applying it to continuum mechanics. 
Since the application of Finite Element Method has been 
exploited to solve the number of problems in various 
engineering disciplines. The great thing about finite 
element method is its ease with which it can be 
generalized to myriad engineering problems comprised of 
different materials. 
Another admirable feature of the Finite Element Method 
(FEM) is that it can be applied wide range of geometries 
having irregular boundaries, which is highly difficult to 
achieve with other contemporary methods. FEM can be 
said to have comprised of roughly 5 steps to solve any 
particular problem. 

The steps can be summarized as  
• Descritizing the domain: This step involves the 
division of whole physical domain into smaller segments 
known as elements, and then identifying the nodes, 
coordinates of each node and ensuring proper 
connectivity between the nodes. 
• Specifying the equation: In this step, the governing 

equation is specified and an equation is written in terms 
of nodal values. 
• Development of Global matrix: The equations are 
arranged in a global matrix which takes into account the 
whole domain. 
• Solution: The equations are solved to get the desired 
variable at each table in the domain. 
• Evaluate the quantities of interest: After solving the 
equations a set of values is obtained for each node, 
which can be further processed to get the quantities of 
interest.  
There are varieties of elements available in FEM, which 
are distinguished by the presence of number of nodes.  
The present study is carried out by using a simple 3-
noded triangular element. 

Good insight into the FEM Galerkin method is employed 
to convert the partial differential equations into matrix 
form for an element. The steps invented are as given 
below. Please note that the nodal terms i, j & k are 
replaced by 1, 2 & 3 respectively in subsequent 
discussions for simplicity. 
The momentum and energy balance equations are 
solved using the Galerkin finite element method. 
Continuity equation will be used as a constraint due to 
mass conservation and this constraint may be used to 
obtain the pressure distribution. In order to solve 
equations, we use the finite element method where the 
pressure P is eliminated by a penalty parameter γ   and 

the incompressibility criteria given by equation (1) which 
results in
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Application of Galerkin method to equation (5) yields  
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where  R
e
 is the residue. Considering individual terms of 

equation (7), the differentiation of following terms results 
into 

XX

TN

X

TN
X

TN
X ∂

∂
∂
∂

∂

∂
∂
∂

∂
∂ ψψψ ][

2

2
][][ +=














                        (8) 

Thus 

∫ ∂
∂∂

∫
∂

∂
∂
∂

∂

∂
∫

A XdX

TN

A
dA

X

TN
X

dA
XA

TN
ψψψ ][

2

2
][

2

2

















=         (9) 

The first term on right hand side of equation (9) can be 
transformed into surface integral by the application of 
Greens theorem and leads to inter-element requirement 
at boundaries of an element. The boundary conditions 
are incorporated in the force vector. 
 
Making use of T = Ni Ti + Nj Tj + Nk Tk 
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The third term of the equation (7) is 
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The equation (7) can be written in the matrix form as: 
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The Finite Element Method of the Energy Equation 
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Considering the terms individually, 
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The remaining two terms of energy equation are evaluated as 
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(22)  

                              
   Thus the stiffness matrix is given by 
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Nusselt Number 

The dimensionless average Nusslet number ( Nu) can be calculated using the formula  

∫
1

0
dYyNuNu =                                                                                                                  (24) 
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IV. RESULTS AND DISCUSSION 

The effect of λ on Streamlines and Isotherms of the fluid 
is illustrated in fig (1) and Fig. (2), which corresponds to 
the values Ra = 50, Ar = 1, and Rd = 1 and Ra = 100, Ar 
= 1 and Rd = 1 respectively. In both figures the 
magnitude of the streamlines decreases when λ 
increases from 0 to 1 is and streamlines tend to move 
towards upper horizontal wall. In isotherms thickness of 
the thermal boundary layer becomes small with increase 
in  λ. 
The effect of Ra on Stream lines and Isotherms of the 
fluid is illustrated in Fig. 3 and  4, which corresponds to 
the values, λ = 0.25, Ar = 1, and Rd = 1 and    λ = 1, Ar = 
1 and Rd = 1 respectively. In both figures the increased 
Raleigh numbers is associated with higher convection 
heat transfer thus the streamlines crowded and covers 
almost whole domain. In both cases the area occupied 
by the temperature lines decreases when Ra is 
maximum. 

The effect of Ar on Stream lines and Isotherms of the 
fluid is illustrated in Fig. (5) and Fig. (6), which 
corresponds to the values, Ra = 100 λ = 0.25 and    Rd 

= 3 and    λ = 1, Ra = 100 and Rd = 3 respectively. In 
both cases with increase in Ar the streamlines are 
distorted and crowded near upper horizontal wall of the 
cavity, indicating the increasing fluid velocity at that 
position. Particularly near  Ar = 2 we observe convective 
effect is observed at lower left, upper right corners of the 
cavity, in Fig.(6), but it shift into upper portion of the hot 
wall in figure (6). 
The effect of Rd on Stream lines and Isotherms of the 
fluid is illustrated in Fig. 7 and 8, which corresponds to 

the values, Ra = 100, Ar = 1, λ = 0.25,  and and λ = 1, 
Ra = 100 and Ar = 1 respectively In both cases we 
observe from the streamlines that the flow consists of a 
single cell and it is clear from the streamlines that the 
velocity of the fluid increases with increase in Rd form 
isotherms we conclude that the thermal boundary layer 
become thin. 

 
GRAPHS: 
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(c) 

Fig. 1. Streamlines (Left) and Isotherms (Right) for Ra = 100, Rd = 3, λ=0.25 
a) Ar =0.5 b) Ar =1 c) Ar =2. 

 
                                                (a)                                                                   (b) 
 

 
(c) 

 
Fig. 2. Streamlines (Left) and Isotherms (Right) for Ra=100, Rd =3, λ=1 

(a) Ar =  0.5  (b)   Ar = 1 (c) Ar = 2. 
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(a) 

 
(b) 

(c)   
 

Fig. 3. Streamlines (Left) and Isotherms (Right) for Ra = 100, Ar = 1, λ=0.25 
(a) Rd = 1 (b) Rd = 5 (c) Rd = 10. 
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Fig. 4. Streamlines (Left) and Isotherms (Right) for Ra =100, Ar = 1, λ = 1 

(a) Rd = 1 (b) Rd = 5 (c) Rd = 10. 
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(c) 

 
Fig. 5. Streamlines (Left) and  Isotherms (Right) for Ra=50, Ar =1, Rd =1 

a) λ=0   b) λ=0.5  c) λ=1. 
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c) 

Fig. 6. Streamlines (Left) and Isotherms (Right) for Ra=100, Ar =1, Rd =1 
a) λ=0   b) λ=0.5 c) λ=1. 
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a) 

 
b) 

 
c) 

 
Fig. 7. Streamlines (Left) and Isotherms (Right) for Ar =1,Rd =1, λ=0.25 

a) Ra=25 b) Ra=75 c) Ra=100. 
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a) 

 
b) 

 
c) 

Fig. 8. Streamlines (Left) and Isotherms (Right) for Ar =1,Rd =1, λ=1 
a) Ra=25 b) Ra=75 c) Ra=100. 

Fig. 9 shows the variation of  ��� with respect to A r of 
the cavity for various values of power law exponent at 
Rd = 3, Ra = 100.The ���  is higher for the case of 

isothermal wall temperature.  For a given value of Ar the 
lines corresponds to λ>0 come close in between Ar, 0.5 
to 1 but it changes with increase in Ar. 
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Fig. 9. ���Variations with Ar at hot surface for different values of λ at   Rd =3, Ra=100. 
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Fig. 10. ���  Variations with Rd at hot surface for different values of   λ at   Ar =1, Ra=100. 

Fig.10 shows the variation of ��� with respect to Rd for 

variation values of  λ at A r = 1, Ra = 100. ��� Increases 
with increase in Rd except at λ = 1.  But the line 

corresponds to λ = 1 first gradually decreases next it 
increases with increase in Rd.  It is clear from the figure 
that heat content of the wall is more at    λ = 0, 

compared with other values of  λ. 
Fig. 11 shows the variation of ��� with respect to Ra for 

various values of Ar at λ = 1, Rd = 3. ��� Increases with 
increase in Ar.  By comparing the lines corresponds to 
Ar = 0.5, Ar = 2 the effective change is observed. 

Fig. 12 shows the variation of ��� with respect to Ra for 

various values of Rd at λ = 1, Ar = 1.It is clear from the 
figure that increase in ��� is almost linear with respect to 
Ra. 

Fig. 13 shows the variation of ���  with respect to λ for 
hot surface at various values of Ra at A r = 1, Rd = 1. It 
is obvious from the figure that the line corresponds to 

different Ra decreases with increase in λ, but they 

merge two times in between λ = 0.1 to 0.5 and next they 

increases with increase in λ.  But all the lines come 

close at high value of   λ. 

 



Devi and Babu,       
 
International Journal on Emerging Technologies 10(2): 78-93(2019)                                 91 

 

 

10 20 30 40 50 60 70 80 90 100 
0.5 

1  

1.5 

2  

2.5 

3  

3.5 

4  

4.5 

___

Nu

A r =0.5 

A r =1 

A r =1.5 

A r=2 

 
Rayleigh Number 

Fig. 11.  ��� Variations with Ra at hot surface for different values of Arat λ =1, Rd=3 
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Fig. 12. ��� Variations with Ra at hot surface for different values of  Rd at λ =1, Ar =1.  
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Fig. 14. ��� Variations with Rd at hot surface for different values of  Ra at  Ar =1, λ =1. 

Fig. 14 shows the variation of ��� with respect to Rd for 

hot surface at different values of Ra at A r =1, λ = 1. ���  
Increases with increase in Rd, the line is corresponds to 
different Ra come close there is no change even the Rd 
is maximum. 

 VI. CONCLUSIONS 

� The magnitude of the streamlines decreases 
when λ as increase from 0 to 1 is and 
streamlines tend to move towards upper 
horizontal wall. 

� The isotherms thickness of the thermal 
boundary layer becomes small with increase in 
λ. 

� The increased Raleigh numbers is associated 
with higher convection heat transfer thus the 
streamlines crowded and covers almost whole 
domain.  

� The area occupied by the temperature lines 
decreases when Ra is maximum. 

� Increase in Ar the streamlines are distorted and 
crowded near upper horizontal wall of the 
cavity, indicating the increasing fluid velocity at 
that position. Particularly near Ar = 2 we 
observe convective effect is observed at lower 
left, upper right corners of the cavity. 

� The flow consists of a single cell and it is clear 
from the streamlines that the velocity of the 
fluid increases with increase in Rd form 
isotherms. We conclude that the thermal 
boundary layer become thin. 
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